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Platycodin D, a natural component of Platycodon
grandiflorum, prevents both lysosome- and
TMPRSS2-driven SARS-CoV-2 infection by
hindering membrane fusion
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Minwoo Wendy Jang1,9, Woojin Won1,9, Mingu Gordon Park1,9, Ae Nim Pae4,5, Sunkyu Han3, Seungtaek Kim2 and
C. Justin Lee 1,9

Abstract
An ongoing pandemic of coronavirus disease 2019 (COVID-19) is now the greatest threat to global public health.
Herbal medicines and their derived natural products have drawn much attention in the treatment of COVID-19, but
the detailed mechanisms by which natural products inhibit SARS-CoV-2 have not been elucidated. Here, we show that
platycodin D (PD), a triterpenoid saponin abundant in Platycodon grandiflorum (PG), a dietary and medicinal herb
commonly used in East Asia, effectively blocks the two main SARS-CoV-2 infection routes via lysosome- and
transmembrane protease serine 2 (TMPRSS2)-driven entry. Mechanistically, PD prevents host entry of SARS-CoV-2 by
redistributing membrane cholesterol to prevent membrane fusion, which can be reinstated by treatment with a PD-
encapsulating agent. Furthermore, the inhibitory effects of PD are recapitulated by the pharmacological inhibition or
gene silencing of NPC1, which is mutated in patients with Niemann–Pick type C (NPC) displaying disrupted membrane
cholesterol distribution. Finally, readily available local foods or herbal medicines containing PG root show similar
inhibitory effects against SARS-CoV-2 infection. Our study proposes that PD is a potent natural product for preventing
or treating COVID-19 and that briefly disrupting the distribution of membrane cholesterol is a potential novel
therapeutic strategy for SARS-CoV-2 infection.

Introduction
SARS-CoV-2 expresses spike glycoprotein (S) on its

surface and uses it to bind to the host receptor
angiotensin-converting enzyme 2 (ACE2)1,2. SARS-CoV-2
is known to enter host cells during infection via two
pathways: (1) the endocytic pathway, followed by cathe-
psin B/L-mediated cleavage of the S protein in lysosomes
and (2) direct fusion of the virus envelope with the host

plasma membrane after TMPRSS2-mediated cleavage of
the S protein2,3. The cleavage of the S protein by cathepsin
B/L, TMPRSS2 or both is the critical step to release viral
RNA into the cytosol of host cells. Therefore, the abun-
dances and availabilities of the two host proteases cathe-
psin B/L and TMPRSS2 and the host receptor ACE2 are
the most critical factors determining host susceptibility to
COVID-19. For example, chloroquine, a well-known anti-
malaria drug, was initially suggested to have potent anti-
SARS-CoV-2 activity due to its ability to block lysosomal
cathepsin-dependent virus entry by elevating the lysoso-
mal pH4,5. Unfortunately, most clinical trials with chlor-
oquine and hydroxychloroquine failed to show beneficial
effects in COVID-19 patients6. The failure of chloroquine
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was attributed to its inability to block TMPRSS2-
mediated SARS-CoV-2 entry7. Subsequently, TMPRSS2
inhibitors such as camostat and nafamostat emerged as
next-generation blockers of SARS-CoV-2 entry. However,
they also fell short due to their inability to block SARS-
CoV-2 entry into certain cell types that express only
ACE2 without TMPRSS28,9. Therefore, the discovery and
development of drugs that block both lysosome- and
TMPRSS2-driven SARS-CoV-2 entry are desperately
needed.
Herbal medicines and their derived natural products

have drawn much attention in regards to COVID-19
treatment because they have been shown to possess
antiviral activity against a broad range of pathogenic
viruses, including influenza, HIV, SARS-CoV, and MERS-
CoV10. To date, numerous natural products have been
proposed to inhibit one of the essential components of
SARS-CoV-2, including main protease (Mpro), RNA-
dependent RNA polymerase (RdRp), ACE2, and
TMPRSS2; however, most are based on in silico screening
through molecular docking approaches11–13. The inhibi-
tory activities have been verified for only a few of these
natural products14, and the detailed molecular mechan-
isms have been elucidated for none. Among thousands of
Korean traditional herbal medicines, we have focused on
the root of Platycodon grandiflorum (PG) (Fig. 1a), which
is described in Dongui Bogam, the most famous 17th
century Korean medical textbook15. The Dongui Bogam
reports that PG can be used to treat patients with dis-
orders of the respiratory tract and lung, the major target
sites of SARS-CoV-216. PG continues to be widely used in
East Asian countries, including Korea, China, and Japan,
to treat several respiratory ailments, such as asthma, air-
way inflammation, and sore throats17–19. Several studies
have demonstrated that the root of PG is enriched with
platycodin D (PD) (Fig. 1b), a glycosylated triterpenoid
saponin (colored in blue; Fig. 1b) and the major active
natural component that mediates these biological activ-
ities20,21. Recently, PD has been reported to exhibit potent
antiviral activity against type 2 porcine reproductive and
respiratory syndrome virus (PRRSV) and hepatitis C virus
(HCV)22,23. However, its inhibitory activity against cor-
onaviruses and its mechanism of action have not been
explored. In this study, we investigated whether PG and
PD show anti-SARS-CoV-2 activity by blocking both
lysosome- and TMPRSS2-driven SARS-CoV-2 entry.

Results
PD, a triterpenoid saponin present in Platycodon
grandiflorum, has specific inhibitory activity against SARS-
CoV-2 entry
To test for anti-SARS-CoV-2 activity, we first developed

a SARS-CoV-2 pseudovirus (pSARS-CoV-2) that carried
the full-length S protein of SARS-CoV-2 on HIV-based

lentiviral particles and the luciferase gene as a reporter24

to mimic the S protein of the native SARS-CoV-2 virus
and retain its ability to bind to host cell surface receptors
for viral infection. We then examined whether PG and PD
could prevent pSARS-CoV-2 entry into H1299 cells, a
human lung cell line known to be susceptible to cor-
onavirus infection25. A luciferase activity assay after
infection with pSARS-CoV-2 revealed that virus entry
into H1299 cells required overexpression of ACE2
(ACE2+) (Supplementary Information, Fig. S1). In ACE2+

cells, we found that 1 h of treatment with PG and PD
effectively reduced pSARS-CoV-2 entry in a dose-
dependent manner with half-maximal inhibitory con-
centrations (IC50) of 5.01 mg/ml (Fig. 1c) and 0.69 μM
(Fig. 1d), respectively. In contrast, PD did not block the
entry of the control lentiviral particles driven by the gly-
coprotein (G proteins) of the vesicular stomatitis virus
(VSV) (Fig. 1e). PD showed no cytotoxic effect on H1299
cells at the tested concentrations (Fig. 1f). These results
indicate that the inhibitory effect of PD on virus entry
requires both the S protein of SARS-CoV-2 and ACE2 in
host cells. To test the specificity of PD among other
saponins, we compared it with ginsenosides, which are a
group of saponins from Panax ginseng, also known as
Korean ginseng. Ginsenosides are known to exhibit anti-
viral activity against multiple types of viruses, such as
rhinovirus, influenza virus, HIV, hepatitis virus, and her-
pesvirus26. In the pSARS-CoV-2 entry assay, none of the
ginsenosides we tested, including the Rb1, Rg3, and gin-
senoside mixture, prevented pSARS-CoV-2 from entering
ACE2+ cells (Fig. 1g–i), suggesting that PD, a triterpenoid
saponin present only in Platycodon grandiflorum, pos-
sesses specific inhibitory activity against SARS-CoV-
2 entry.

Herbal medicine and foods containing PG inhibit both the
lysosome- and TMPRSS2-mediated SARS-CoV-2 entry
pathways through the action of PD
To determine which of the two entry pathways is the

target of PD, we prepared additional cell lines, H1299 and
HEK293T, overexpressing both ACE2 and TMPRSS2
(ACE2/TMPRSS2+) and compared the inhibitory effects
of various drugs with those on ACE2+ cells. We found
that E64d and chloroquine, inhibitors of lysosomal
cathepsins, effectively blocked pSARS-CoV-2 entry only
in ACE2+ cells but not in ACE2/TMPRSS2+ cells,
whereas camostat and nafamostat, inhibitors of
TMPRSS2, effectively blocked pSARS-CoV-2 entry into
ACE2/TMPRSS2+ cells but not into ACE2+ cells (Fig. 2a,
b). In contrast, 5 μM PD completely inhibited pSARS-
CoV-2 entry in both ACE2/TMPRSS2+ and ACE2+ cells
(Fig. 2a, b). The actual potency of the PD inhibition of
pSARS-CoV-2 entry into ACE2/TMPRSS2+ cells (as an
IC50 value) was determined to be 0.72 μM (Fig. 2c), which
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was almost identical to that in ACE2+ cells (Fig. 1d).
These results suggest that PD targets any one of the
events that is common to both entry pathways.
Yonggaksan (YGS, Fig. 2d), in which the main ingre-

dient is an extract powder from the PG root, has been

available as an over-the-counter medicine and used for
the treatment of phlegm, cough, and sore throat for more
than 50 years in Korea and 200 years in Japan. Thus, we
examined whether YGS has potential as a nonprescription
medicine to block SARS-CoV-2 entry. We found that a
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Fig. 1 PD, a saponin present only in Platycodon grandiflorum, blocks SARS-CoV-2 entry into human cells. a Platycodon grandiflorum (balloon
flower) and the root of Platycodon grandiflorum. b Chemical structure of PD, with triterpenoid saponin shown in blue. c–e ACE2+ H1299 cells were
pretreated for 1 h with the indicated concentrations of water extract of PG root (c) or PD (d, e) and transduced with pSARS-CoV-2-(S) (c, d) or VSV-(G)
(e). After culture for 24 h, the transduction efficiency was quantified by measuring the activity of firefly luciferase in the cell lysates. f Cytotoxicity was
determined using the WST-8 cell viability assay. g–i pSARS-CoV-2 entry assay with ginsenoside Rb1 (1, 3, 10 μM) (g), Rg3 (1, 3, 10 μM) (h), and the
ginsenoside mixture (1, 3, 10 μg/ml) (i). The inset shows the chemical structures of Rb1 and Rg3 (g, h). The data were representative of three
independent experiments with triplicate samples. The error bars indicate the SEM.
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Fig. 2 (See legend on next page.)
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dilute solution of YGS effectively inhibited pSARS-CoV-2
entry into both ACE2+ and ACE2/TMPRSS2+ cells in a
dose-dependent manner, with similar IC50 values of
3.17 mg/ml in ACE2+ cells (Fig. 2e) and 3.72 mg/ml in
ACE2/TMPRSS2+ cells (Fig. 2f), suggesting its ther-
apeutic potential for SARS-CoV-2. Another main ingre-
dient of YGS is an extract powder from licorice roots
(active component is glycyrrhizin), which has the ability to
inhibit the replication and penetration of SARS-CoV27

and is therefore thought to have therapeutic potential for
COVID-1928. Thus, we tested the effects of glycyrrhizin
and isoliquiritigenin, another major component of licorice
roots, on the entry of pSARS-CoV-2. We found that both
compounds exhibited no significant inhibitory activity
against pSAR-CoV-2 entry into either ACE2+ or ACE2/
TMPRSS2+ cells (Fig. 2g, h). Moreover, mixing the two
compounds with 1 μM PD did not either enhance or
reduce pSARS-CoV-2 entry into ACE2+ cells (Fig. 2i).
Quantification of YGS components by high-performance
liquid chromatography (HPLC) further revealed that PD is
the main active compound of YGS that blocks pSARS-
CoV-2 entry (Supplementary Information, Figs. S2, S3).
The common daily dosage and regimen for YGS involves
the application of one spoonful (0.3 g) of YGS powder to
the throat surface without water, waiting for 20–30min,
and repeating 3–6 times a day. To mimic this usage, we
treated the cells with YGS four times for 20min each time
at 4 h intervals before adding pSARS-CoV-2 (Fig. 2j).
Under this dosage and regimen, YGS effectively reduced
pSARS-CoV-2 entry, with similar IC50 values of 13.49 mg/
ml in ACE2+ cells (Fig. 2k) and 15.26 mg/ml in ACE2/
TMPRSS2+ cells (Fig. 2l). Taken together, these results
suggest that YGS, through the action of PD, has high
potential for the treatment of SARS-CoV-2 infection as a
nonprescription, over-the-counter medicine.
In Korean culture, the root of PG is often served as a

side dish at daily meals. For example, PG syrup (PGS) has
been considered a folk remedy for relieving several

symptoms of respiratory diseases. PGS (Fig. 2m) is pre-
pared by chopping PG roots (Fig. 1a) into small pieces and
marinating them in sugar or honey for several months and
then mixing them with warm water and served as a drink.
To test whether PGS also has an inhibitory effect on
pSARS-CoV-2 entry, we treated ACE2+ and ACE2/
TMPRSS2+ cells with serial threefold dilutions of PGS
stock solution containing 15mg/ml PG root for 1 h before
infection with pSARS-CoV-2. We found that PGS effec-
tively inhibited pSARS-CoV-2 entry, with similar IC50

values of 2.91 mg/ml (Fig. 2n) in ACE2+ cells and
3.69 mg/ml in ACE2/TMPRSS2+ cells (Fig. 2o). More-
over, HPLC analysis demonstrated that PD is the main
active compound in PG roots that has inhibitory activity
against pSARS-CoV-2 entry (Supplementary Information,
Figs. S2, S3). These results suggest that even dietary foods
containing PG roots might also have beneficial effects on
COVID-19 patients.

PD blocks SARS-CoV-2 entry by preventing cholesterol-
dependent membrane fusion
To delineate the detailed molecular and cellular

mechanisms of PD action, we explored two possible
events that are common to both entry pathways: (1) the
initial binding of the S protein to ACE2 at the plasma
membrane and (2) the fusion of the viral membrane to the
host cell membrane for the translocation of viral RNA
into the cytosol of host cells. Of the two events, we tested
the first possibility. The S protein of SARS-CoV-2 binds to
ACE2 via a receptor binding domain (RBD) in the
S1 subunit29. ACE2+ cells were incubated with medium
containing the RBD of SARS-CoV-2 fused to GFP (S
(RBD)-GFP). Flow cytometry analysis showed that S
(RBD)-GFP was capable of binding over 95% of ACE2+

cells. Importantly, pretreatment with 5 μM PD did not
change the ability of S (RBD)-GFP to bind to ACE2+ cells
(Fig. 3a). Thus, we eliminated the possibility that PD
influences a specific interaction between the SARS-CoV-2

(see figure on previous page)
Fig. 2 PD and PG root-containing herbal medicines and foods block two main SARS-CoV-2 entry pathways. a, b H1299 cells (a) and
HEK293T cells (b) that expressed ACE2 alone (ACE2+) or in combination with TMPRSS2 (ACE2/TMPRSS2+) were pretreated with each drug for 1 h
prior to the pSARS-CoV-2 entry assay. The lysosomal protease inhibitors E64d and chloroquine and the TMPRSS2 inhibitors camostat and nafamostat
were used to verify the pSARS-CoV-2- entry pathways in these cells. c pSARS-CoV-2 entry assay with PD in ACE2/TMPRSS2+ cells. d Yonggaksan (YGS)
is composed of a group of herbal powders, including PG root. e–i ACE2+ and ACE2/TMPRSS2+ cells were treated with serial threefold dilutions of the
YGS stock solution (15 mg/ml) (e, f), with 1, 3, 10 μM glycyrrhizin and isoliquiritigenin (g, h), or with 1 μM PD in the absence or presence of 10 μM
glycyrrhizin, isoliquiritigenin, or glycyrrhizin plus isoliquiritigenin (i) for 1 h prior to transduction with pSARS-CoV-2 in the presence of each drug.
j Experimental timeline for YGS pretreatment before transduction with pSARS-CoV-2. k, l ACE2+ (k) and ACE2/TMPRSS2+ (l) cells were pretreated with
serial threefold dilutions of YGS at a starting concentration of 100 mg/ml for 20 min four times at 4 h intervals and then transduced with pSARS-CoV-2
without YGS. m PG syrup, mainly made of PG root and frequently used for respiratory disease. n, o ACE2+ (n) and ACE2/TMPRSS2+ cells (o) were
pretreated with serial threefold dilutions of a PG syrup stock solution containing 15 mg/ml of the PG root for 1 h prior to transduction with pSARS-
CoV-2 in the presence of syrup. After culture for 24 h, the viral entry efficiency was quantified by measuring the activity of firefly luciferase in the cell
lysates. The data were representative of two or three independent experiments with triplicate samples. The error bars indicate the SEM. P values were
determined by the unpaired, two-tailed Student’s t-test. NS not significant.
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host cells. b, c ACE2+ cells were incubated in culture medium containing 10% FBS or 10% lipoprotein-free FBS for 24 h prior to the pSARS-CoV-2 entry
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amount of time, followed by the pSARS-CoV-2 entry assay (h) or staining with filipin-III (i). j, k ACE2+ cells were treated with 5 μM PD in the presence
or absence of 100 μM MβCD for 1 h, followed by the pSARS-CoV-2 entry assay (j) or staining with filipin-III (k). The data from the pSARS-CoV2 entry
assay are representative of two or three independent experiments with triplicate samples. The error bars indicate the SEM. P values were determined
by the unpaired, two-tailed Student’s t-test (b, e, g) or one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test (j). *P < 0.05; **P < 0.01;
***P < 0.001; ****P < 0.0001; NS not significant. The error bars are not visible when they are within the symbols (h).
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S protein and ACE2. We then investigated the possible
mechanism of PD action during membrane fusion. It has
been reported that PD helps lower cholesterol levels in a
mouse model of hypercholesterolemia30 and that deple-
tion of membrane cholesterol content inhibits TMPRSS2-
mediated coronavirus fusion31–33, raising the possibility
that PD directly influences the membrane cholesterol
content to disturb membrane fusion. To elucidate the role
of cholesterol in SARS-CoV-2 entry, we performed an
entry assay with ACE2+ cells grown in lipoprotein-free
culture medium and compared the results to those
obtained with control medium. Lipoprotein-free culture
conditions caused a significant reduction in pSARS-CoV-
2 entry into ACE2+ cells (Fig. 3b) and a significant
depletion of cholesterol on the plasma membrane as well
as in other intracellular compartments, as revealed by the
staining of ACE2+ cells with filipin-III, a fluorescent dye
that binds to free cholesterol (Fig. 3c). These results
support that the inhibitory action of PD on SARS-CoV-2
entry could be due to its effect on membrane cholesterol.
As another example of disrupted cholesterol trafficking,

we explored the cellular model of Niemann–Pick type C
(NPC), which is characterized by a redistribution of free
cholesterol from the plasma membrane and accumulation
in the late endosome and lysosome compartment34. NPC
is caused by loss-of-function mutations in either the
NPC1 or NPC2 gene35. After generating NPC1- and
NPC2-specific shRNAs (Fig. 3d), we performed a pSARS-
CoV-2 entry assay and found that the gene silencing of
NPC1 and NPC2 by the respective shRNAs significantly
reduced the pSARS-CoV-2 entry into ACE+ cells (Fig. 3e).
Staining with filipin-III showed the expected altered
trafficking of membrane cholesterol and the accumulation
of endolysosomal cholesterol (Fig. 3f). We next utilized
U18666A, a well-known inhibitor of NPC1, to pharma-
cologically disturb membrane cholesterol. U18666A is
known to inhibit NPC1 function by directly binding to the
sterol-sensing domain of the NPC1 protein36. Further-
more, treatment with U18666A has been shown to disrupt
the entry of a variety of enveloped viruses, including
dengue virus, Ebola virus, HCV, influenza A virus, Zika
virus, chikungunya virus, and HIV37, as well as cor-
onaviruses such as SARS-CoV, Middle East respiratory
syndrome-related coronavirus (MERS-CoV), and Type I
feline coronavirus (F-CoV)38,39. We found that 12 h of
treatment with 10 μM U18666A completely blocked
pSARS-CoV-2 entry into both ACE2+ and ACE2/
TMPRSS2+ cells (Fig. 3g). Intriguingly, the slow time
course of the blocking effect of U18666A on pSARS-CoV-
2 entry into ACE2/TMPRSS2+ cells (Fig. 3h) coincided
very well with the slow time course of the disappearance
of membrane cholesterol (Fig. 3i). This slow time course
of U18666A was in marked contrast to the fast-acting
effect of PD (Fig. 3h). These results suggest that disturbing

membrane cholesterol can be an effective target to block
SARS-CoV-2 entry.
To test whether PD blocks SARS-CoV-2 entry by dis-

rupting membrane cholesterol, we utilized methyl
β-cyclodextrin (MβCD), which exhibits a doughnut-
shaped structure that makes it a natural complexing
agent for encapsulating cholesterol and other large
molecules, such as hormones, vitamins, and natural
hydrophobic macrocompounds40. When cells are exposed
to high concentrations of MβCD (5–10mM) for more
than 2 h, 80–90% of total cellular cholesterol can be
removed41. However, at much lower concentrations and a
1-h incubation time, MβCD should not encapsulate
cholesterol. Indeed, after incubation at 100 μM for 1 h,
MβCD treatment showed no significant effect on pSARS-
CoV-2 entry into ACE2+ cells (Fig. 3j). Under the same
conditions, MβCD completely reversed the blocking effect
of PD on pSARS-CoV-2 entry to the level of the control
DMSO (Fig. 3j). PD alone induced a dramatic redis-
tribution of membrane and endolysosomal cholesterol
(Fig. 3k), which was somewhat different from the effect of
U18666A (Fig. 3i, 12 h). These results indicate that
100 μM MβCD completely sequestered 5 μM PD without
affecting the membrane cholesterol content. Indeed,
staining with filipin-III showed no alteration of membrane
cholesterol after treatment with 100 μM MβCD alone, a
significant redistribution of membrane cholesterol after
treatment with 5 μM PD, and complete reversion of
membrane cholesterol after treatment with 100 μM
MβCD together with 5 μM PD (Fig. 3k).
To understand the detailed molecular mechanisms by

which PD prevents pSARS-CoV-2 entry at the chemical
structure level, we utilized dynamic molecular modeling
techniques. Based on the previously reported crystal
structure of the cholesterol-βCD encapsulation complex
(Fig. 4a)42, we performed homology modeling of choles-
terol-MβCD and PD-MβCD complexes (Fig. 4b, c). We
found that out of 21 hydroxyl groups in βCD (Fig. 4d),
~12–18 could be methylated at different positions, while
MβCD with 14 methyl groups showed the greatest
encapsulating capacity. Therefore, we chose tetradeca-
2,6-O-methyl-β-cyclodextrin (Fig. 4e) as the representa-
tive MβCD to model the cholesterol-MβCD and PD-
MβCD complexes and calculated the binding energy for
each molecular pair in terms of the glide G-score and the
molecular mechanics/generalized born surface area (MM-
GBSA) free energy scores (Fig. 4f). The cholesterol-MβCD
encapsulation complex was formed by two MβCD mole-
cules arranged coaxially, forming a head-to-head dimer
via intramolecular hydrogen bonds and one cholesterol
molecule fitted snugly into the hydrophobic cavity of
MβCD, whose methoxymethyl groups encapsulated cho-
lesterol better than the cholesterol-βCD complex (Fig.
4b). In the PD-MβCD encapsulation complex, the
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Complex Glide G score MM-GBSA dG, kcal/mol
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hydrophobic core of PD fit well into the MβCD host
dimer, whereas the hydrophilic sugar tail of PD was fully
exposed to the solvent (Fig. 4c). Overall, the molecular
modeling of MβCD, PD, and cholesterol revealed that a
homodimer of MβCD snugly encapsulated PD and cho-
lesterol with a higher affinity to PD than cholesterol (Fig.
4f), supporting the possibility that MβCD preferentially
sequesters PD over cholesterol. A similar molecular
modeling of membrane-inserted PD and cholesterol in an
explicit lipid bilayer model also predicted the similar
orientations of the partly embedded PD and fully
embedded cholesterol (Fig. 4g). In particular, unlike
cholesterol, the hydrophilic sugar moiety of PD stuck out
of the lipid bilayer (Fig. 4g), creating a protrusion on the
surface of the membrane, which might have the ability to
hinder membrane fusion. Furthermore, none of the other
natural triterpene compounds without a sugar moiety but
with a backbone structure similar to that of PD, including
echinocystic acid, oleanolic acid, and ursolic acid (Fig. 4h),
showed inhibitory activity against pSARS-CoV-2 entry
(Fig. 4i) and altered the distribution of membrane cho-
lesterol (Fig. 4j), implying that the sugar moieties attached
to the saponin backbone of PD might be responsible for
its action against pSARS-CoV-2 entry by altering mem-
brane cholesterol. These results raise the strong possibility
that PD prevents membrane fusion in a cholesterol-
dependent manner.

PD inhibits exocytosis-mediated membrane fusion
We next tested the effect of PD on the well-known

membrane fusion event of spontaneous inhibitory post-
synaptic currents (sIPSCs) in acute brain slices as a proof-
of-concept experiment and a proxy methodology for
monitoring fusion of the viral envelope with the host cell
membrane. We performed slice patch-clamp recordings
of hippocampal CA1 pyramidal neurons (Fig. 5a) and
recorded sIPSCs before and during the application of PD
(Fig. 5b). We found that PD effectively inhibited the fre-
quency of sIPSCs without affecting the amplitude (Fig. 5c,
d). The time course of PD inhibition was relatively fast,
occurring ~10–15 s after onset (Fig. 5c). The
concentration-response relationship showed that PD
effectively inhibited the sIPSC frequency, with an IC50 of
6.724 μM, whereas PD did not inhibit the amplitude of
sIPSCs (Fig. 5e, f). These results support that the inhibi-
tory action of PD on pSARS-CoV-2 entry might be due to
its ability to interfere with membrane fusion. While
whether an intermolecular relationship exists between PD
and cholesterol remains unknown, cholesterol appears to
help facilitate the incorporation of PD into the membrane,
as evidenced by a 2.5-fold increase in the IC50 value for
the inhibition of pSARS-CoV-2 entry under lipoprotein-
free conditions (Supplementary Information, Fig. S4).
Taken together, these results strongly suggest that PD

blocks SARS-CoV-2 entry by interacting with cholesterol
and preventing fusion of the viral membrane to the host
cell membrane.

PD inhibits the authentic SARS-CoV-2 infection of Vero and
Calu-3 cells
As a final measure, we evaluated the antiviral activity of

PD on authentic SARS-CoV-2 viruses obtained from the
Korea Centers for Disease Control and Prevention
(KCDC). We performed an immunocytochemistry-based
assessment of SARS-CoV-2 infection using an antibody
against the SARS-CoV-2 nucleocapsid N protein, as pre-
viously described9. Infected host cells were automatically
counted using in-house image analysis software. For the
host cells, we utilized both the monkey-derived Vero and
the human-derived Calu-3 cell lines. Western blot ana-
lysis showed abundant expression of ACE2 in both cell
types, the lack of TMPRSS2 expression in Vero cells, and
high expression of TMPRSS2 in Calu-3 cells (Fig. 6a). We
found that PD significantly reduced SARS-CoV-2 infec-
tion in both TMPRSS2-negative Vero cells and
TMPRSS2-positive Calu-3 cells, with IC50 values of 1.19
and 4.76 μM, respectively (Fig. 6b–d). YGS also effectively
inhibited the SARS-CoV-2 infection of Vero cells, with an
IC50 of 10.9 mg/ml (Fig. 6c, d). These IC50 values obtained
from authentic SARS-CoV-2 viruses were within a range
similar to those obtained from pSARS-CoV-2 (Figs. 1c,
2c), indicating that PD is equally effective against
authentic SARS-CoV-2 viruses. Unlike other previously
reported drugs (Table 1), PD shows uniquely exhibits
equally high potencies against SARS-CoV-2 infection of
both TMPRSS-negative Vero and TMPRSS-positive Calu-
3 cells. This is in marked contrast to other drugs, which
show only one-sided potency in either TMPRSS-negative
Vero (chloroquine) or TMPRSS-positive Calu-3 (camo-
stat, nafamostat). Taken together, these results indicate
that PD has an important advantage over other known
drugs in that it can potently prevent SARS-CoV-2 infec-
tion by inhibiting both lysosome- and TMPRSS2-driven
SARS-CoV-2 entry pathways during the common process
of viral membrane fusion by disrupting membrane cho-
lesterol on the host cell (Fig. 7).

Discussion
SARS-CoV-2 binds to ACE2 and enters host cells via

membrane fusion after proteolytic cleavage of the SARS-
CoV-2 S protein by (1) cathepsin B/L in the lysosomal
membrane or (2) TMPRSS2 in the plasma membrane. We
have demonstrated that PD effectively inhibits both of the
SARS-CoV-2 entry pathways almost equally in ACE+ and
ACE/TMPRSS2+ cells, with IC50 values ranging from 0.69
to 4.76 μM against both pseudo and authentic SARS-
CoV-2 viruses. To the best of our knowledge, PD is the
first single compound that simultaneously blocks the two
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main pathways of SARS-CoV-2 infection. As a first-
generation inhibitor, chloroquine was introduced as a
potential inhibitor against SARS-CoV-2 infection. How-
ever, clinical trials with this drug have mostly failed
because it blocks only cathepsin-mediated viral entry7. To
date, TMPRSS2 inhibitors such as camostat and nafa-
mostat have been considered as second-generation inhi-
bitors of SARS-CoV-2 entry. However, they were recently
reported to be ineffective at preventing viral entry into
TMPRSS2-negative cells8,9. Thus, we propose PD as the
next-generation inhibitor of SARS-CoV-2 infection, as it
blocks both entry pathways with much higher potency
than existing drug candidates, such as chloroquine,
camostat, and nafamostat.

One of the highlights of our study is that PD alters the
distribution of membrane cholesterol, which contributes
to its anti-SARS-CoV-2 activity. Our finding is consistent
with very recent reports showing that 25-hydrocholesterol
(25-HC) has an antiviral effect on SARS-CoV-2 infection
by promoting the accumulation of cholesterol in late
endosomes and potentially restricting S protein-mediated
membrane fusion via the depletion of membrane choles-
terol31–33. These reports strongly support our notion that
alteration of membrane cholesterol can be an effective
strategy to prevent SARS-CoV-2 infection. However, how
PD interacts with membrane cholesterol and inhibits
membrane fusion remains unclear. Although pharmaco-
logical inhibition of NPC caused a depletion of membrane
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cholesterol (Fig. 3i), PD did not deplete membrane cho-
lesterol (Fig. 3k). These results raise the possibility that
the PD mechanism is independent of cholesterol. On the
other hand, the PD potency decreased by 2.5-fold when
cholesterol was depleted (Supplementary Information,

Fig. S4), suggesting that cholesterol helps to facilitate the
intercalation of PD into the membrane. Molecular mod-
eling experiments suggest that PD and cholesterol behave
similarly because the hydrophobic triterpenoid saponin
moieties of PD and cholesterol are similar in size and
hydrophobicity. The major structural difference derives
from the fact that PD contains an additional elaborate
sugar moiety that is strongly hydrophilic due to the
multiple hydroxyl groups of the sugar moiety, which
cholesterol lacks. This raises an interesting possibility that
while PD behaves similarly to cholesterol within the lipid
bilayer, PD behaves profoundly differently outside the
lipid bilayer, creating a physical hindrance due to the
elaborate sugar tail that extends out from the membrane
(Fig. 4g). Considering that the thickness of the lipid
bilayer is ~10 nm, the sugar tail of PD could extend out by
~2–3 nm (Fig. 4g). Such conspicuous protrusions on the
membrane could greatly hinder any membrane fusion
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Table 1 List of drugs with IC50 in Vero and Calu-3 cells.

Drug IC50 in Vero (μM) IC50 in Calu3 (μM)

platycodin D 1.19 4.76

YGS 10.9 mg/ml n.d.

chloroquine 7.91 >50a

camostat >50a 0.187a

nafamostat 13.88a 0.0022a

remdesvir 10.67 1.74

aRef. 9.
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events that require close proximity and direct contact
between two membrane structures, e.g., the SARS-CoV-2
membrane and the host cell membrane. A classic example
of such fusion is synaptic release due to fusion of the
synaptic vesicle membrane to the presynaptic terminal
membrane during exocytosis. Indeed, we found that PD
could also inhibit synaptic release events due to mem-
brane fusion (Fig. 5), supporting our hypothesis that the
PD sugar tail protrusion hinders membrane fusion. Future
investigations are needed to systematically test this
exciting possibility.
Recent studies have revealed that ACE2 and TMPRSS2

are highly expressed in nasal epithelial cells and at lower
levels in lung tissues43,44. These reports provide a plau-
sible explanation for why viral loads of SARS-CoV-2 in
the upper respiratory tract peak before the onset of
symptoms and why presymptomatic transmission occurs.
Therefore, reducing the viral loads in the upper respira-
tory tracts of COVID-19 patients at the early and
asymptomatic stages must be the most effective strategy
to stop the current pandemic. Here, we tested the anti-
SARS-CoV-2 infection activity of YGS, a commercially
available herbal medicine containing PG as the main
ingredient, and obtained IC50 values of 3.17 and 3.72 mg/
ml for ACE2+ and ACE2/TMPRSS2+ cells infected with
pSARS-CoV-2, respectively, and a value of 10.9 mg/ml for
Vero cells infected with authentic SARS-CoV-2. YGS is

formulated as a fine powder, and traditional usage
involves the application of a spoonful (300 mg) of YGS
onto the throat membrane and waiting for several min-
utes without drinking water. Through this unique for-
mulation and usage, an effective PD concentration can be
reached at regions around the throat mucus membrane
and along the epithelial lining of the upper respiratory
airways. Alternatively, if applicable, PD can be easily and
directly administered via the nasal route in the form of
drops or spray for therapeutic purposes. These ideas
should be tested immediately in animal models and
COVID-19 patients. Therefore, we suggest that PG-
containing herbal medicines and foods as well as the PD
compound itself are promising therapeutic options for
halting the spread of SARS-CoV-2 within and between
individuals.
It has been predicted that the emergence of SARS-CoV-

2 from bat-originated SARS-CoV is probably due to
naturally occurring mutations during its natural course of
spread45. Such an alarming concept forebodes further
emergence of more virulent versions of SARS-CoV-2.
However, our study supports that Mother Nature has
already prepared natural products, such as PD, that are
capable of protecting humans from SARS-CoV-2 infec-
tion, which is comforting. This raises the important point
that it might be advantageous to find a cure among vastly
diverse natural products in addition to developing

Fig. 7 Schematic model of the mechanism by which PD prevents SARS-CoV-2 entry. a, b In both ACE2+ and ACE2/TMPRSS2+ cells, PD
incorporates into the host membrane with sugar moieties protruding through the surface of the membrane and inhibits SARS-CoV-2 membrane
fusion with the endolysosomal membrane (a) and the plasma membrane (b).
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vaccines, which might become ineffective upon the
emergence of new SARS-CoV-2 variants45.

Materials and Methods
Cell culture
H1299, A549, MRC-5, and Caco2 cells were obtained

from the Korean Cell Line Bank. HEK293T cells were
obtained from the American Type Culture Collection
(ATCC, USA, CRL-3216). H1299 and A549 cells were
cultured in RPMI-1640 (Gibco, USA), and MRC-5, Caco2,
and HEK293T cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM; Corning, USA) supplemented
with 10% fetal bovine serum (FBS) (Gibco, USA) and 1X
penicillin-streptomycin solution (HyClone, USA) at 37 °C
in a humidified incubator containing 5% CO2. For cell
culture under lipoprotein-free conditions, lipoprotein-
depleted 10% FBS (Kalen Biomedical, USA) was used. For
authentic SARS-CoV-2 experiments, Vero cells were
obtained from ATCC (CCL-81) and maintained at 37 °C
with 5% CO2 in DMEM supplemented with 10% FBS and
1X antibiotic-antimycotic solution (Gibco, USA). The
Calu-3 cells used in this study were derived from a clonal
isolate that grew faster than the parental Calu-3 cells
obtained from ATCC (HTB-55). Calu-3 cells were
maintained at 37 °C with 5% CO2 in Eagle’s Minimum
Essential Medium (EMEM, ATCC) supplemented with
10% FBS and 1X antibiotic-antimycotic solution.

Reagents
PD, U18666A, E64d, chloroquine, camostat mesylate,

nafamostat mesylate, ginsenoside Rb1, ginsenoside Rg3,
ginsenoside mix, glycyrrhizin, isoliquiritigenin, echino-
cystic acid, oleanolic acid, ursolic acid, and methyl-beta-
cyclodextrin were purchased from Sigma-Aldrich
Co. (USA).

Plasmids and establishment of stable cell lines
The full-length ACE2 sequence from pCEP4-myc-ACE2

(a gift from Erik Procko, Addgene plasmid #141185) was
cloned into the pHR-CMV lentiviral expression vector (a
gift from A. Radu Aricescu, Addgene plasmid # 113888)
via the EcoRI and AgeI restriction sites. The TMPRSS2
lentiviral expression vector, RRL.sin.cPPT. SFFV/
TMPRSS2 (variant 1).IRES-neo. WPRE (MT130), was
gifted by Caroline Goujon (Addgene plasmid # 145843).
For gene silencing, oligonucleotides that contained
shRNA sequences targeting NPC1 (5′-CCAGGTTCTT
GACTTACAA-3′) and NPC2 (5′-CGGTTCTGTGGA
TGGAGTTAT-3′) and nonspecific a (NS) sequence
(5′-CAACAAGATGAAGAGCACCAA-3′) were cloned
into the pLKO.1 puro lentiviral shRNA plasmid. For
stable cell line generation, these plasmids were transiently
transfected into HEK293T cells with the packaging plas-
mid psPAX2 and envelope plasmid pMD2.G using

Lipofectamine 3000 transfection reagent (Thermo Fisher,
USA) according to the manufacturer’s instructions. At 24
and 48 h posttransfection, the lentivirus particles con-
taining supernatants were harvested, filtered through
0.45-μm-pore size filters and used to infect H1299 cells,
which were seeded on 6-well plates and cultured until
reaching 70–80% confluence. One milliliter of the virus
supernatant was directly overlaid onto the cells in the
presence of polybrene (Merck, Germany) at a final con-
centration of 4 μg/ml. After 24 h, the supernatant medium
was replaced with fresh medium, and the cells were cul-
tured for 2–3 days.

SARS-CoV-2 spike-pseudotyped lentivirus production
SARS-CoV-2 spike (S)-pseudotyped lentiviruses were

generated using a second generation lentiviral packing
system. In brief, HEK293T cells at 70–80% confluency in a
6-well plate were transfected with 1 μg of a lentiviral
backbone that contained expression cassettes for firefly
luciferase, 0.75 μg of the psPAX2 packing plasmid, and
0.5 μg of the SARS-CoV-2 spike plasmid (a gift from Fang
Li, Addgene plasmid #145032) using the Lipofectamine
3000 transfection reagent (Invitrogen, USA) according to
the manufacturer’s instructions. The pMD2.G plasmid
was used to create a control lentivirus pseudotyped with
VSV-G. At 24 and 48 h posttransfection, supernatants
containing SARS-CoV-2 S-pseudotyped virus particles
were collected, filtered through a 0.45-µm-pore size filter,
and stored at 4 °C until use.

pSARS-CoV-2 entry assay
H1299 cells stably expressing ACE2 or ACE2 together

with TMPRSS2 were cultured in 48-well plates until
reaching 70–80% confluence. To determine the effect of
drugs on pSARS-CoV-2 entry, stable H1299 cells were
pretreated for 1 h with each drug and then overlaid with
virus-containing supernatants in the presence of each
drug. After 24 h incubation, the viral entry efficiency was
quantified by measuring the activity of firefly luciferase in
cell lysates using a luciferase assay system (Promega,
USA) and the SpectraMax iD5 Multi-Mode Microplate
Reader (Molecular Devices, USA).

Authentic SARS-CoV-2 virus and dose-response curve
analysis by the immunofluorescence assay
The Korean strain of SARS-CoV-2 (βCoV/KOR/

KCDC03/2020) was provided by the KCDC and propa-
gated in Vero cells. Viral titers were determined by plaque
assays in Vero cells. All experiments using SARS-CoV-2
were performed at the Institut Pasteur Korea in com-
pliance with the guidelines of the KNIH using enhanced
biosafety level 3 (BSL-3) containment procedures in
laboratories approved for use by the KCDC. Vero cells
were seeded at 1.2 × 104 cells per well, and Calu-3 cells
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were seeded at 2.0 × 104 cells per well in black, 384-well,
μClear plates (Greiner Bio-One, Austria) 24 h prior to the
experiment. Ten point DRCs were generated, with com-
pound concentrations ranging from 0.02–10 μM and
0.05–24mg/ml except for chloroquine and remdesivir,
which ranged from 0.1–150 μM. For viral infection, plates
were transferred into the BSL-3 containment facility, and
SARS-CoV-2 was added at a multiplicity of infection
(MOI) of 0.0125 in Vero cells and 0.5 in Calu-3 cells. The
cells were fixed at 24 hpi with 4% paraformaldehyde
(PFA), stained with the SARS-CoV-2 nucleocapsid (N)
protein, and analyzed by immunofluorescence. The
acquired images were analyzed using Columbus software
(PerkinElmer, Inc. Waltham, MA) to quantify the cell
numbers and infection ratios, and antiviral activity was
normalized to positive (mock) and negative (0.5% DMSO)
controls in each assay plate. DRCs were fitted by sig-
moidal dose-response models using XLfit 4 or
Prism6 software with the following equation: Y= Bottom
+ (Top ˗ Bottom)/(1+ (IC50/X)Hillslope). The half-
maximal inhibitory concentration (IC50) values were cal-
culated from the normalized activity dataset-fitted curves.
IC50 values were measured in duplicate, and the quality of
each assay was controlled by the Z′-factor and the coef-
ficient of variation as a percentage (%CV).

Cell viability assay
H1299, Calu-3, and Vero cells seeded in 96-well plates

(5 × 103 cells/well) were treated with the indicated con-
centrations of PD. After 24 h of treatment, WST-8 solu-
tion (Biomax, Korea) was added and incubated for 2 h.
Water-soluble formazan formed in the culture medium
was measured by a SpectraMax iD5 Multi-Mode Micro-
plate Reader (Molecular Devices, USA) at an absorbance
of 450 nm. The relative cell viability (%) is expressed as
the percentage relative to the DMSO-treated control cells.

Protein extraction and immunoblot analysis
Cell lysates were prepared by solubilizing cells with ice-

cold RIPA lysis buffer (Rockland Immunochemicals,
USA) supplemented with a protease and phosphatase
inhibitor cocktail (Thermo Fisher Scientific, USA), fol-
lowed by centrifugation at 13,000 rpm for 20min. The
cleared cell lysates were mixed with a proper volume of 5x
SDS sample buffer, separated by SDS-PAGE, and trans-
ferred onto nitrocellulose membranes. After blocking
with 5% skim milk in TBST (20 mM Tris-HCl (pH 7.5),
150mM NaCl, 0.05% Tween 20) for 1 h at room tem-
perature (RT), the membranes were incubated in TBST at
4 °C overnight with the following primary antibodies:
rabbit anti-NPC1 (Novus, NB400-148), rabbit anti-NPC2
(Novus, NBP1-84012), rabbit anti-ACE2 (Abcam,
ab15348), rabbit anti-TMPRSS2 (Abcam, ab92323), and
mouse anti-GAPDH (Abcam, ab8245). The membranes

were incubated with the corresponding horseradish
peroxidase-conjugated secondary antibodies (KPL, USA)
for 1 h at RT. Antibody-protein complexes were detected
using ECL Western Blotting Substrate (Thermo Fisher
Scientific, USA).

Filipin III cholesterol staining
H1299 cells grown on coverslips were fixed with 4%

PFA at RT for 10min and then stained with 5 μg/ml
filipin-III (Cayman, USA) in PBS/1% FBS solution at RT
for 2 h in the dark. The stained cells were examined under
an LSM700 confocal microscope (Carl Zeiss, Germany).

Flow cytometry analysis
Expi293F cells were transfected with pcDNA3-SARS-

CoV-2-S-RBD-sfGFP (a gift from Erik Procko, Addgene
plasmid # 141184) using the ExpiFectamine™ 293
Transfection Kit according to the manufacturer’s direc-
tions (Thermo Fisher Scientific, USA). The cells were then
cultured for 4–5 days and removed by centrifugation at
800×g for 5 min, and the culture medium was stored at
−4 °C. To analyze the effects of PD on the binding of
CoV-2-RBD-GFP to ACE2 on the cell surface, H1299 cells
expressing ACE2 were treated with DMSO or 5 μM PD
for 1 h and washed with ice-cold PBS-BSA, followed by
incubation with a 1/10 dilution of medium containing
CoV-2-RBD-GFP for 30min on ice. H1299 cells were
then washed twice with PBS-BSA and analyzed on a BD
LSRFortessa™ flow cytometer.

HPLC analysis
The PG root or YGS powder was dissolved in distilled

water and analyzed using an HPLC system (Agilent 1100)
at 203 nm with an RS Tech HECTOR-M C18 column
(4.6 × 250 mm, 5 micron particle size, RS Tech Corp,
Cheongju, South Korea). Elution was performed at 25 °C
with a mixture of solvent A (water) and solvent B (acet-
onitrile). The gradient eluent system consisted of 82:18
(A:B) from 0 to 22min, 82:18 (A:B) to 70:30 (A:B) from
22min to 32min, and 70:30 (A:B) to 50:50 (A:B) from
32min to 60min and a flow rate of 1 mL/min.

Molecular modeling of MβCD inclusion complexes
The Schrodinger Maestro software 2017 suite (Maestro,

Schrödinger, LLC, New York, NY) was used to prepare
and score the MβCD binding complexes. The software
tools were applied using the default settings at pH 7.4
unless stated otherwise below. The binding complex
models were prepared based on the crystal structure of
the β-cyclodextrin (βCD) cholesterol inclusion complex
(CSD entry: KEXQUC)42. The crystal structure of tetra-
deca-2,6-O-methyl-β-cyclodextrin (CSD entry: BOY-
FOK03)46 was used to represent MβCD in the binding
complex. Both crystal structures were obtained from the
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Cambridge Structural Database (CSD), and all water
molecules were removed. The ligands cholesterol and PD
were drawn in ChemDraw Professional 16.0 and imported
as structure data files into the Maestro LigPrep module.
The Ligprep module was used to prepare all ligands for
further use and to determine the ligand partial charges,
optimize the geometry, and perform energy minimization
using the OPLS3 force field. The MβCD binding com-
plexes were prepared using the βCD-cholesterol complex
as a template. First, the atomic coordinates of the two
template βCD units were copied onto two corresponding
MβCD units. Cholesterol was added to the interior of the
complex by copying the atomic coordinates of the tem-
plate guest cholesterol molecule, whereas PD was placed
using a rigid alignment, maximum common structure
molecular overlay tool. To account for the increase in the
macrocycle size, as well as to remove molecular strain and
atomic bumps and relax the binding complex structures, a
restrained energy minimization algorithm was applied
using the OPLS3 force field and a heavy atom RMSD
restriction of 2 Å. The obtained ligand binding poses were
scored in place by the Glide SP (standard precision) dock
score, and afterwards, the relative ligand binding affinity
was estimated by the Prime MM-GBSA tool with a
variable-dielectric generalized Born (VDGB) continuum
solvation model and the OPLS3 force field. The binding
affinity was calculated using the equation: ΔGbind=
Ecomplex(minimized)− (Eligand(minimized)+ Ehost(minimized)).
More negative scores indicated stronger binding. Binding
complex visualization was performed using the Discovery
Studio Client 2020 package (Dassault Systèmes; BIOVIA.
Discovery Studio Modeling Environment; Release 2020;
Dassault Systèmes: USA, 2020).

PD and cholesterol orientation in the cell membrane
The Discovery Studio Client 2020 package was used to

optimize the position and orientation of PD and choles-
terol in an explicit membrane bilayer consisting of 1-
palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine
(POPE) lipid molecules. Before running the membrane
addition and molecule orientation algorithm, the 3D
conformations of PD and cholesterol were prepared using
the standard ligand preparation protocol and energy
minimized with the general CHARMm force field. The
molecule was first reoriented toward an implicit mem-
brane by performing a stepwise search for the minimum
solvation energy of the molecule, which was calculated by
the CHARMM36 force field and the generalized Born
implicit membrane (GBIM) module. The membrane
thickness was set to 35 Å. After determining the optimal
molecular position in the implicit membrane, the lipid
bilayer was constructed by adding POPE lipid molecules,
water molecules, and counterions (Na+ and Cl−) without
performing system equilibration.

Electrophysiology
For acute brain slicing, 5-week-old C57BL/6 J mice were

anesthetized with isoflurane and decapitated. Transverse
slices of the hippocampus (300 μm) were prepared in ice-
cold NMDG-based cutting solutions (93mM NMDG;
2.5mM KCl; 1.2 mM NaH2PO4; 30mM NaHCO3;
20mM HEPES; 25mM glucose; 5 mM sodium ascorbate,
2 mM thiourea, 3 mM sodium pyruvate, 10mM MgCl2,
0.5mM CaCl2, pH adjusted to 7.3 with HCl, 310mOsm)
on the D.S.K Linear Slicer pro7 (Dosaka EM Co., Ltd) and
recovered for 15min at 32 °C in the same solution. Slices
were rerecovered in oxygenated ACFS solution (126mM
NaCl; 24mM NaHCO3; 2.5mM KCl; 1 mM NaH2PO4;
2mM MgCl2; 10mM glucose). Spontaneous IPSCs were
recorded under oxygenated ACFS solution conditions by a
whole-cell voltage clamp. Recording electrodes (6–8MΩ)
fabricated from standard wall borosilicate glass (GC150F-
10, Warner Instrument Corp., USA) were filled with a
CsCl-based internal solution (135mM CsCl; 4 mM NaCl;
0.5mM CaCl2; 10mM HEPES; 5 mM EGTA, 0.5mM
Na2-GTP; 2mM Mg-ATP; 1mM QX-314). For the acute
PD treatment and sIPSC recordings, ACSF containing
10 µM PD was applied after establishment of the baseline.
For long-term PD treatment and sIPSC recording, slices
were incubated in ACSF containing PD (0, 0.3, 1, 3, 10,
30 μM) for at least 1 h, and whole-cell voltage-clamp
recordings were performed in the same solutions. sIPSCs
were recorded for at least 5 min. For sIPSC frequency and
amplitude analysis, Mini Analysis Program software
(Synaptosoft) was used. Data obtained with a holding
current under−300 pA at baseline were excluded from the
analysis.

Statistical analysis
The data in this study are representative of two or three

independent experiments with triplicate samples and are
presented as the mean ± SEM. Statistical analysis was
performed using Student’s t-test or one-way ANOVA
followed by Tukey’s post hoc test. A p value less than 0.05
was considered to indicate statistical significance (*P <
0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; NS not sig-
nificant). For all statistical analyses, Prism v.9.0.0 was used
(GraphPad Software).
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