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SUMMARY

Phosphoinositide 3-kinases (PI3Ks) andRas andRho
family small GTPases are key regulators of cell polar-
ization,motility, and chemotaxis. They influence each
other’s activities by direct and indirect feedback
processes that are only partially understood. Here,
we show that 21 small GTPase homologs activate
PI3K. Using a microscopy-based binding assay, we
show that K-Ras, H-Ras, and five homologous Ras
family small GTPases function upstream of PI3K by
directly binding the PI3K catalytic subunit, p110. In
contrast, several Rho family small GTPases activated
PI3K by an indirect cooperative positive feedback
that required a combination of Rac, CDC42, and
RhoG small GTPase activities. Thus, a distributed
network of Ras and Rho family small GTPases
induces and reinforces PI3K activity, explaining
past challenges to elucidate the specific relevance
of different small GTPases in regulating PI3K and
controlling cell polarization and chemotaxis.

INTRODUCTION

PI3K as well as Ras family small GTPases are among the most

important early signaling components; they mediate cell growth,

proliferation, migration, and multiple other cellular processes

(Engelman et al., 2006; Etienne-Manneville and Hall, 2002; Heo

et al., 2006; Karnoub and Weinberg, 2008; Lee et al., 2007;

Rodriguez-Viciana et al., 1997). In addition to regulating down-

stream components such as Raf, different Ras small GTPases

have been shown to directly interact with and activate class I

PI3Ks through a Ras binding domain (RBD) that is present in all

p110 catalytic subunits (Pacold et al., 2000; Rodriguez-Viciana

et al., 1994, 1996). In Drosophila, mutation of the Dp110 RBD

impaired interaction with Ras1 (homolog of mammalian H-, K-,

and N-Ras) and severely reduced insulin responses, body size,

and egg numbers, suggesting that Ras is indispensable for the
full activation of class I PI3Ks (Orme et al., 2006). Experiments

using mouse neutrophils revealed that a defective p110 RBD

significantly reduced activation of PI3K and the migration of

neutrophils (Suire et al., 2006). In cells with a homozygous muta-

tion in the p110 RBD, Akt phosphorylation is significantly

impaired in response to EGF and completely abrogated in

response to FGF2 (Gupta et al., 2007). Nevertheless, most

studies to date have focused mostly on the role of the small

GTPases H-Ras and K-Ras, and it is not well understood

whether other members of the large family of Ras small GTPases

directly bind to and activate PI3K.

The role of Rac small GTPases in regulating PI3K is even less

understood. Most studies showed that they act downstream of

PI3K (Fleming et al., 2000; Han et al., 1998), whereas other

studies have suggested that they can also activate PI3K (Servant

et al., 2000; Weiner et al., 2002), thereby creating a positive feed-

back loop. This feedback loop may also involve polarized actin

(Peyrollier et al., 2000; Wang et al., 2002) in addition to Rac

(Srinivasan et al., 2003). These studies showed that cells ex-

pressing constitutively active Rac had elevated levels of PIP3,

which could be lowered by inhibiting actin polymerization. In

addition, most of the Rho family small GTPases are able to

induce or alter actin polymerization (Heo and Meyer, 2003).

Nevertheless, the role of different Rho family small GTPases in

the positive feedback loop of PI3K activation is not understood.

Recent studies have shown that the rapid activation of endoge-

nous Rac triggers effective actin polymerization, but fails to

positively activate PI3K (Inoue and Meyer, 2008). This led us to

also investigate if and how Rho family small GTPases contribute

to a positive feedback activation of PI3K.

Based on these considerations, we performed a systematic

analysis of PI3K regulation by the Ras superfamily of small

GTPases. Live-cell imaging showed that 21 out of 100 human

small GTPases activate PI3K. We employed a microscopy-

based interaction assay and found that the seven Ras family

small GTPases acted upstream of PI3K and directly interacted

with the p110 subunit of PI3K. In contrast, employing chemically

inducible versions of different selective and unspecific GEF

proteins, we discovered that Rac/CDC42/RhoG small GTPases

activate PI3K by an indirect cooperative positive feedback

involving not one but multiple endogenous small Rho family
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Figure 1. Identification of Small GTPases that Activate PI3K

(A) Predicted roles of small GTPases in PI3K activation.

(B) YFP-PHAKT1 localization in NIH 3T3 cells coexpressing constitutively active small GTPases. Scale bar, 20 mm.

(C) Quantitative measurements of PIP3 production by line scan analysis of YFP-PHAKT1 localization. The PI3K activation index is the relative ratio of the fluo-

rescence of the plasma membrane to the fluorescence of the cytosol: (FPM-FBG)/(FCyt-FBG), where F is the fluorescence intensity (FPM, plasma membrane; FBG,

background; FCyt, cytosol). Data represent the mean ± SD (n = 5 experiments; * indicates p < 0.001 compared with control [CFP]).

(D) Phylogenic trees of the 100 human small GTPases. Homologies were analyzed with a Clustal WMSA algorithm. The relative amount of PI3K activation is color

coded based on the PI3K activation index.

(E) Cells expressing constitutively active small GTPases were preincubated for 1 hr with LY29 (50 mM) to inactivate PI3K. The LY29 was then washed out to

observe the inducible activation of PI3K by small GTPases. Scale bar, 20 mm.
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GTPases. Mathematical modeling showed that the requirement

for multiple small GTPases creates a unique ultrasensitivemech-

anism for PI3K activation. Thus, PI3K activation is mediated by

a systems design that involves multiple direct inputs from Ras

family members as well as cooperative parallel positive feed-

backs viamultiple Rho family members that mediate an ultrasen-

sitive activation of PI3K. This explains previous difficulties in

sorting out the roles of different Ras and Rho family small

GTPases and PI3K signaling in the establishment of cell polarity.

RESULTS

Identification of 21 Small GTPases as PI3K Activators
Wefirst confirmed that PI3K activity is increased in cells express-

ing constitutively active versions of either H-Ras or Rac1 (Fig-

ure 1A). The pleckstrin homology (PH) domain of AKT1 (PHAKT1)

was used to monitor PI3K activity based on the relative increase

in plasma membrane translocation of this PIP3 lipid-binding
282 Molecular Cell 47, 281–290, July 27, 2012 ª2012 Elsevier Inc.
domain. In serum-deprived cells, PHAKT1 was evenly dispersed

throughout the cells, whereas cells expressing H-Ras or Rac1

exhibited significant translocation of PHAKT1 to the plasma

membrane. Quantitative analysis showed that H-Ras-induced

PHAKT1 translocation was 1.5-fold stronger than Rac1-induced

translocation (Figure S1).

The role of other small GTPases in the activation of PI3K was

investigated by selecting and screening 100 CFP-conjugated

human small GTPases. YFP-PHAKT1 localization was analyzed

in NIH 3T3 cells coexpressing each constitutively active small

GTPase. These experiments showed that 21 of these small

GTPases significantly activated PI3K, while 79 had no significant

effect on PI3K activation (examples in Figures 1B and 1C; see

Figure S2 for a full set of images). All of the PI3K-activating small

GTPases belonged to the Ras and Rho families (Figure 1D) and

could be classified into three groups according to the degree

of PI3K activation. H-, K-, N-, and R-Ras induced the strongest

PHAKT1 localization to the plasma membrane, with the other
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Figure 2. Identification of Small GTPases that Directly Activate PI3K

(A) Schematic diagram of the InCell SMART-i technique used to observe protein-protein interactions using ferritin-derived nanoparticles.

(B) Constitutively active H- and R-Ras bound to RBDp110. Scale bar, 20 mm.

(C) Kinetic analysis of the nanoclusters of constitutively active H-Ras (solid line) and dominant-negative H-Ras (dotted line). Data represent themean ±SD (n > 10).

(D) After rapamycin treatment for 1 hr, the nanoclusters of the 21 constitutively active small GTPases were measured. YFP and dominant-negative H-Ras were

used as negative controls. Data represent the mean ± SD (n > 20; * indicates p < 0.001 compared with control [YFP]).
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Ras family members inducing relatively smaller amounts of

translocation. Rho family small GTPases induced intermediate

levels of PHAKT1 translocation.

To validate these results, the rate of PI3K activation was

measured by testing the kinetics of PHAKT1 translocation. Cells

coexpressing constitutively active H-Ras, R-Ras, or Rheb and

YFP-PHAKT1 were preincubated with the PI3K inhibitor

LY294002 (LY29). After wash-out of LY29, PI3K was reactivated

by H- and R-Ras, which led to a rapid translocation of PHAKT1 to

the plasma membrane within a few minutes (Figure 1E; Movie

S1). Constitutively active Rheb, which had no effect on PI3K acti-

vation, did not induce translocation of PHAKT1 in this assay. Thus,

this result further supports the data showing that H- or R-Ras

triggers PI3K activation and that the process of PI3K activation

is very rapid, on a timescale of minutes.

Seven Small GTPases Are Direct Activators of PI3K
To determine the molecular mechanism of PI3K activation

by these small GTPases, a recently developed technology

called InCell SMART-i (intracellular supramolecular assembly

readout trap for interactions) (Lee et al., 2011) was used

to determine whether the identified PI3K-activating small

GTPases directly interact with the RBD domain of p110

(RBDp110). In InCell SMART-i, ferritin (FT), a genetically encoded

nanoparticle, is labeled with fluorescent proteins and engineered

to directly or indirectly display bait (B) and prey (P) on its surface.

Upon B-P interaction, ferritin nanoparticles (FT-NPs) assemble

into nanoclusters, which are visualized as fluorescent dots

(Figures S3A and S3B).
Interactions between small GTPases and RBDp110 were

assessed using FT-NPs displaying FKBP-rapamycin-binding

(FRB) and RBDp110, and fusion proteins comprised of reiterated

FK506-binding protein (FKBP) and small GTPases lacking the

C-terminal CAAX or polybasic motif necessary for cytoplasmic

localization. Small GTPase-RBDp110 interaction and heterodime-

rization of FKBP and FRB triggered by rapamycin created

molecular bridges that assembled the FT-NPs into nanoclusters

(Figure 2A). When HeLa cells coexpressing FKBPx2-YFP-H-Ras

or R-Ras, RBDp110-CFP-FT, and FRB-mRFP-FT were treated

with rapamycin, nanoclusters assembled within 5 min (Figures

2B and 2C; Movie S2). Nanocluster formation was induced

by the constitutively active forms of the small GTPases, but not

by the dominant-negative forms, demonstrating the specificity

of InCell SMART-i (Figure 2C). Interestingly, among the 21

small GTPases that activate PI3K, only 7 members of the Ras

family small GTPases (H-Ras, K-Ras4A, K-Ras4B, N-Ras, R-

Ras, R-Ras2, and R-Ras3) were able to induce nanocluster

formation (Figure 2D; see Figure S3C for a full set of images).

The same seven small GTPases were also the most potent

PI3K activators. Thus, taken together with the PH domain trans-

location results, H-, K-, N-, and R-Ras are upstream direct

activators of PI3K.

Multiple Rho Family Small GTPases Are Downstream
Activators of PI3K
Next, the remaining 14 PI3K-activating small GTPases were

analyzed to determine whether they might be part of a positive

feedback loop by also acting as downstream effectors of PI3K.
Molecular Cell 47, 281–290, July 27, 2012 ª2012 Elsevier Inc. 283
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Figure 3. Cooperative Positive Feedback from Rho Family Small GTPases to PI3K

(A) Schematic diagram of the strategy used to activate endogenous PI3K.

(B) Endogenous PI3K activation was sufficient for YFP-PHAKT1 translocation andmorphological changes within 5min. Protrusions are indicated by yellow arrows.

Scale bar, 20 mm.

(C) Time series of the translocation of CF-iSH and YFP-PHAKT1 to the plasma membrane. The change in cell area following endogenous PI3K activation is also

shown. The y axis shows the ratio of plasma membrane fluorescence intensity to cytosolic fluorescence intensity and the total cell area (mm2).

(D) Protrusion (red) map after activation of endogenous PI3K in cells expressing dominant-negative small GTPases. Scale bar, 20 mm.

(E) Quantitative analysis of the protrusion area. Data represent the mean ± SD (n > 10; * indicates p < 0.001 compared with control [CF-iSH]).

(F) FRET/CFP ratio images show that Rac1 and Cdc42 are activated in response to rapamycin-induced endogenous PI3K activation but that Rap1A and RalA are

not. Scale bar, 20 mm.

(G) Kinetic analysis of the percentage of fold change FRET/CFP ratio that was normalized to the initial ratio. Data represent the mean ± SD (n > 10; * indicates

p < 0.001).
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It has been suggested that PI3K enhances actin polymerization

and membrane protrusion during cell motility through activating

the small GTPase Rac1 (Cantley, 2002) and possibly homolo-

gous small GTPases. Indeed, we observed that cells expressing

each of these 14 small GTPases induced different types of actin-

based membrane protrusions (Heo and Meyer, 2003), suggest-

ing that they may have, at least in principle, a role in mediating

PI3K-induced morphological changes.

We first considered that a specific small GTPase is likely

downstream of PI3K, if the PI3K-mediated actin polymerization

can be reduced or blocked when a dominant-negative mutant

of that small GTPase is expressed. To assess this, membrane

protrusion was quantitatively analyzed using an inducible PI3K

activation strategy. To rapidly induce PI3K activation, we used

an inducible protein translocation assay based on an FKBP-

rapamycin-FRB interaction. The inter-SH2 (iSH) domain of the
284 Molecular Cell 47, 281–290, July 27, 2012 ª2012 Elsevier Inc.
p85 regulatory subunit, which is known to interact with the

p110 PI3K catalytic subunit, was conjugated to CFP-FKBP

(CF). Lyn11-FRB (LDR), a plasma membrane-anchored form of

FRB, was then used to recruit CF-iSH to the plasma membrane

in response to rapamycin treatment (Suh et al., 2006) (Figure 3A).

When cells cotransfected with LDR, CF-iSH, and YFP-PHAKT1

were treated with rapamycin, PIP3 production and membrane

protrusion occurred within 5 min (Figures 3B and 3C). We

then tested whether PI3K-induced membrane protrusion was

diminished by the presence of dominant-negative mutants of

the different small GTPases. Dominant-negative Cdc42, RhoG,

and Rac1 strongly affected PI3K-induced protrusion, suggesting

that these Rho small GTPases are downstream of PI3K. In

contrast, dominant-negative mutants of Rit, Rap1A, Rap2B,

and RalA did not have any significant effects on PI3K-induced

membrane protrusion (Figures 3D and 3E).
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To further confirm that these Rho small GTPases are down-

stream of PI3K, the activities of Rap1A, RalA, Rac1, and

Cdc42 were monitored following the activation of PI3K. To

assess the activity of these small GTPases, we used small

GTPase-specific FRET biosensors (Komatsu et al., 2011). Cells

were again cotransfected with the inducible PI3K activation

system (mCherry-FKBP-iSH and LDR) together with each

FRET biosensor. After serum deprivation to reduce basal small

GTPase activities, PI3K was activated by rapamycin-induced

translocation of mCherry-FKBP-iSH, and the percentage of the

FRET/CFP signal change was measured. Activation of PI3K led

to the significant increase in the Rac1- and Cdc42-specific

FRET/CFP ratio, while the biosensors for Rap1A and RalA

showed no significant changes (Figures 3F and 3G), suggesting

that Rac1 and Cdc42 are activated following PI3K activation,

whereas Rap1A and RalA are not activated.

These results were further validated using the Cdc42/Rac

interactive binding (CRIB) domain of PAK1 (CRIBPAK1) and the

RBD of RAF1 (RBDRAF1), which were reported previously to

interact with the GTP-bound forms of Rac1 or Rap1A and

R-Ras, respectively (Kraynov et al., 2000; Nassar et al., 1995;

Spaargaren et al., 1994) (Figures S4A–S4C). In this assay,

recruitment of the respective domain to the plasma membrane

reflects small GTPase activation. Cells were cotransfected with

CF-iSH, LDR, and effector domains, with or without wild-type

Rac1, Rap1A, or R-Ras. Consistent with the results in Figure 3,

treatment with rapamycin led to the significant translocation of

CRIBPAK1 to the plasma membrane in Rac1 cotransfected cells,

while RBDRAF1 did not show any translocation even in the pres-

ence of Rap1A or R-Ras coexpression (Figures S4D and S4E).

This shows that Rac1, but not Ras or Rap, is activated by

PI3K. Taken together with the results presented above, this

suggests that the Rho small GTPases Rac, CDC42, and likely

RhoG, but not the Ras, Rap, or Ral small GTPases, are activated

downstream of PI3K.

Multiple Rho Family Small GTPases Are Required
for Effective PI3K Activation
We next investigated the mechanism by which downstream

Rho family small GTPases activate PI3K. Actin polymerization

mediated by small GTPases has been reported to contribute to

such a positive feedback loop for PI3K activation (Servant

et al., 2000; Srinivasan et al., 2003; Wang et al., 2002; Weiner

et al., 2002). In addition, several Rho family small GTPases

have been reported to synergistically regulate actin polymeriza-

tion and cell migration, processes in which PI3K has a major role

(Machacek et al., 2009). This made us test the hypothesis that

multiple Rho family small GTPases may cooperatively activate

PI3K. In order to conditionally activate different Rho family small

GTPases at an endogenous level, cells were transfected with

FKBP-tagged guanine exchange factors (GEFs), which are

activated via rapamycin-induced translocation. Fgd1, Tiam1,

and SGEF were used to specifically activate Cdc42, Rac1, and

RhoG, respectively, and broad-spectrum Vav2 was used for

simultaneous activation of Cdc42, Rac1, and RhoG (Inoue

et al., 2005; Rossman et al., 2005). Translocation of each GEF

by the addition of rapamycin successfully induced specific

morphological changes (Figure 4A). To determine the combina-
torial effect of the Rho family small GTPases on PI3K activation,

cells were cotransfected with LDR, mCherry-PHAKT1, CF-conju-

gated GEF, and Lyn-YFP as an internal control and analyzed by

total internal reflection fluorescence (TIRF) microscopy. CF and

CF-iSH were used as negative and positive controls, respec-

tively. After the induction of CF-iSH translocation to the plasma

membrane, PHAKT1 was rapidly recruited to the plasma

membrane, whereas CF did not have any notable effect on

PHAKT1 translocation. Interestingly, in contrast to the overex-

pression of constitutively active small GTPases, conditional acti-

vation of endogenous levels of individual Rho family small

GTPases did not induce significant activation of PI3K. However,

simultaneous activation of Cdc42, Rac1, and RhoG by the

induced plasma membrane translocation of Vav2 resulted in

significant PI3K activation (Figures 4B and 4C). Moreover, the

PI3K activation induced by Vav2 occurred in a Grb2 and Ras-

independent manner (Figures S5 and S6) and was completely

suppressed by siRNA-mediated knockdown of Cdc42 or RhoG

(Figure 5A).

To further confirm the combinatorial effect of GEFs, cells were

transfected with a combination of SGEF, Tiam1, and Fgd1.

Consistent with Vav2 results, there was significant increase of

PI3K activation after recruitment of only three GEFs to the

plasma membrane by the rapamycin treatment (Figure 5B).

These data argue that Rho family small GTPases cooperate to

generate an effective positive feedback loop for PI3K activation.

To analyze the role of multiple positive feedback loops in the

regulation of PI3K activity, a mathematical model was con-

structed comprising three small GTPases (Cdc42, Rac1, and

RhoG), PI3K, and two GEFs (Fgd1 and Vav2, Figure 6A). This

model focused on the regulation of PI3K activity by Cdc42,

Rac1, and RhoG because the expression of Rac2 and Rac3 is

limited to hematopoietic cells and neuronal cells (Heasman

and Ridley, 2008), respectively, and because Cdc42h shares

a high degree of sequence homology with Cdc42. For simplicity,

it was assumed that the three feedback loops, which are regu-

lated by Rac1, Cdc42, or RhoG, have similar feedback effects

and that they cooperatively activate PI3K. Fgd1 was considered

a GEF specific for Cdc42. Simulations using this model showed

that PI3K is significantly activated if three positive feedback

loops are simultaneously activated by Vav2. However, if only

one feedback loop is activated, by Fgd1, PI3K is not significantly

activated, consistent with our experimental results (Figure 6B).

We also simulated knockout of one feedback loop in the

model, demonstrating that all three feedback loops are required

for the activation of PI3K based on these plausible model

assumptions (Figure 6C). This is also consistent with the experi-

mental data in Figure 5A. For comparison, another mathematical

model was constructed in which the PI3K activity is determined

by simple summation of the effects of the three feedback

loops (rather than cooperation between them). The results of

this additive model show that Fgd1 activates PI3K and that two

activated feedback loops activate PI3K, which does not agree

well with the experimental results (Figure S7). These results indi-

cate that the three coupled positive feedback loops play an

important role in increasing the activity of small GTPases (see

Kim et al., 2008 for the various roles of coupled feedback loops)

and that small GTPases cooperatively regulate PI3K activity.
Molecular Cell 47, 281–290, July 27, 2012 ª2012 Elsevier Inc. 285



Figure 4. Cooperation of Multiple Rho Family Small GTPases Is Required for the Generation of an Effective Positive Feedback Loop at

Endogenous Levels

(A) Translocation of different GEFs (DH-PH domains) to the plasma membrane induced marked morphological changes. YFP-LifeAct (an F-actin biosensor) was

used to monitor changes in morphology. Scale bar, 20 mm.

(B) Top and bottom rows show the CFP-FKBP-DH-PH domain of each GEF and mCherry-PHAKT1, respectively. Each ratio image was normalized to the plasma

membrane marker (YFP-Lyn). CF and CF-iSH were used as negative and positive controls, respectively. Scale bar, 20 mm.

(C) Quantitative measurements of the translocation of CFP-FKBP-GEFs and mCherry-PHAKT1 to the plasma membrane (normalized to the initial value) showed

that the induced activation of Vav2 triggered effective PI3K activation through parallel positive feedback loops.
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We further verified in the model that all of the three GEFs

(Fgd1, Tiam1, and SGEF) were required for the activation of

PI3K at endogenous levels of Cdc42, Rac1, and RhoG (Fig-

ure 6D). Together, these results imply that PI3K activation may

require that the concentrations of the active forms of these three

GEFs have to exceed a critical threshold and that such a

threshold cannot be reached without overexpression. Figure 6E
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Figure 5. Model ShowingHowPI3KActivity IsCooperatively Regulated

Positive Feedback Loops

(A) Cdc42 or RhoG knockdown blocked positive feedback activation of PI3K by

(B) Simultaneous activation of combined three GEFs (Fgd1, Tiam1, and SGEF)

(n > 15; * indicates p < 0.001).

286 Molecular Cell 47, 281–290, July 27, 2012 ª2012 Elsevier Inc.
shows that even a very high level of only Fgd1 cannot activate

PI3K. Nevertheless, a high level of Vav2 is sufficient for activation

even when the endogenous levels of the other three GEFs are

low. From these results, we can speculate that an overexpres-

sion of constitutively active form of Cdc42 above the normal level

can induce activation of PI3K, as shown in Figure 1B. Figure 6F

shows the existence of such a threshold in the model. Based on
GEF
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Loops

(A) A simplified diagram of the feedback regulation of PI3K by downstream small GTPases used for mathematical modeling.

(B) Temporal profiles of PI3K activity for two different GEFs when endogenous levels of the GTPases are given.

(C) Temporal profiles of PI3K activity when one feedback loop was or was not knocked out.

(D) Temporal profiles of PI3K activity for three combinatorial inputs of three GEFs.

(E) Temporal profiles of PI3K activity for three input level (1, 10, and 100) of Fgd1 and one input level (10) of Vav2 when the endogenous levels of Cdc42, Rac1, and

RhoG are low (all are set to 0.1 in this simulation).

(F) Temporal profiles of PI3K activity for four consecutive levels (0.09. 0.18, 0.27, 0.36) of constitutively active Cdc42, which correspond to overexpression

experiments of the Cdc42 active form.
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these results, the model explains how PI3K activity can be coop-

eratively and effectively amplified by downstream activators

through coupled positive feedback loops that can be triggered

by endogenous levels of small GTPases.

DISCUSSION

Our results reveal a systematic and cooperative mechanism for

PI3K activation by a number of small GTPases. A comprehensive

screen of 100 small GTPases identified 21 small GTPases that

activate PI3K. Interestingly, all of the 21 small GTPases are

members of the Ras or Rho families. We used a recently devel-

oped platform to measure protein-protein interactions in living

cells (InCell SMART-i) and showed that seven small GTPases

function as upstream activators by directly interacting with

PI3K. These PI3K activators included H-, K-, N-, and R-Ras,

and all belonged to the Ras family small GTPases. They also

showed the most robust activation of PI3K. Because all these

upstream activators localized to the plasma membrane, the

interaction between these small GTPases and PI3K likely recruits

PI3K to the plasma membrane as part of the activation process.

Two experiments utilizing the inducible activation of PI3K for

quantifying membrane protrusion and monitoring small GTPase

activity showed that Cdc42 and RhoG as well as Rac are down-

stream, with their activity being activated by PI3K. Moreover, our

experimental data and mathematical modeling show that the

positive feedback PI3K activation by these downstream small
GTPases can only occur in a cooperativemanner in the presence

of endogenous levels of the small GTPases.

Taken together, our result argues for a cooperative activation

of PI3K by a combination of multiple upstream Ras family small

GTPase inputs and positive feedback amplification by several

Rho family small GTPases (Figure 7). Following external stim-

ulus, GEFs for upstream activators are recruited to the plasma

membrane and switch the upstream activators to an active

state (Chardin et al., 1993; Mochizuki et al., 2001). The upstream

activators then bind to and recruit PI3K to the plasmamembrane

for the production of PIP3. After PI3K activation, increased PIP3

levels recruit PH domain-containing Rho-GEFs, including Tiam1

and Vav2, to the plasma membrane (Fleming et al., 2000;

Han et al., 1998). This results in the activation of downstream

GTPases, which induce actin polymerization and generate

a positive feedback loop that further activates PI3K in a cooper-

ative manner. During cell migration, several reports have

shown that the activity of both PI3K and the PI3K activators

identified in this study accumulate and interact at the leading

edge of the cell (Li et al., 2005; Machacek et al., 2009; Niggli,

2000; Wang et al., 2002; Weiner et al., 2002; Zhang et al.,

2008). This suggests that the systematic activation of PI3K

by both upstream and downstream activators is required for

cell polarization and proper cell migration. Additionally, it is

possible that the simultaneous activation of multiple down-

stream activators is essential for maintaining the polarity during

cell migration.
Molecular Cell 47, 281–290, July 27, 2012 ª2012 Elsevier Inc. 287



Figure 7. Coordinated Activation of PI3K by the Ras Superfamily of

Small GTPases
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Cooperation of Downstream Activators Is Essential
for PI3K Activation by a Positive Feedback Loop
Rac small GTPase (Srinivasan et al., 2003) and actin polymeriza-

tion (Peyrollier et al., 2000; Wang et al., 2002) have been

proposed to be key mediators of a positive feedback loop that

amplifies PI3K activity. Nevertheless, the rapid activation of

endogenous Rac did not result in any significant increase in

PI3K activity, despite marked changes in cellular morphology

and actin polymerization (Inoue and Meyer, 2008). Interestingly,

we now show that Cdc42 and RhoG are also involved in PI3K

activation. Moreover, all of the downstream activators induce

membrane protrusion by actin polymerization, which is one of

the major functions of PI3K in cell migration and polarization

(Heo and Meyer, 2003; Rodriguez-Viciana et al., 1997; Wang

et al., 2002). Consistently, small GTPases associated with the

process of cell shrinkage, such as RhoA, did not activate PI3K.

This agrees with previous reports showing that RhoA is an antag-

onist of PI3K via PTEN activation (Li et al., 2005). The involve-

ment of multiple Rho family small GTPases in a positive feedback

loop led us to question how these Rho small GTPases function in

this positive feedback loop for the activation of PI3K. To explore

this positive feedback mechanism, we utilized the inducible

translocation of the GEFs of Tiam1, Fgd1, and SGEF to activate

endogenous Rac, Cdc42, and RhoG, respectively. Surprisingly,

we found that the activation of individual small GTPases failed

to trigger PI3K activation, despite significant actin polymeriza-

tion. In contrast, PI3K was activated upon the simultaneous

activation of endogenous Rac, CDC42, and RhoG by Vav2.

The degree of PI3K activation was dependent on the number

of downstream activators, although the amount of actin polymer-

ization by these GEFs was similar. Furthermore, siRNA experi-

ments showed that the knockdown of a single downstream

activator abolished PI3K activation induced by Vav2. Taken

together, these results suggest that a combined activation of

small GTPases is critical for effective generation of the postu-

lated positive feedback loop for PI3K activation. In addition, it

indicates that PI3K is activated by a synergistic activation mech-

anism mediated jointly by active Rac, Cdc42, and RhoG.
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Indirect Activation of PI3K by Ras Family Small GTPases
We also identified eight Ras family small GTPases, including Rit,

Rap1A, Rap2B, and RalA, which do not directly interact with

PI3K and are also not downstream of PI3K. These small

GTPases have been reported previously to regulate PI3K activity

(Rodriguez-Viciana et al., 2004). Although the detailed mecha-

nism of PI3K activation by these small GTPases was not eluci-

dated in this study, it is possible that they may indirectly induce

PI3K activation through regulating upstream or downstream

activators (Arthur et al., 2004; Hoshino and Nakamura, 2003;

Schwamborn and Püschel, 2004). Consistent with this, the levels

of PI3K activation induced by these small GTPases were less

robust than those induced by upstream or downstream activa-

tors. In addition, both indirect and downstream activator small

GTPases induce actin polymerization and morphological

changes. An example of this is shown by Rap2B, which induces

the formation of ‘‘eyelash-like’’ morphological structures that are

likely a combination of lamellipodia and filopodia induced by Rac

and Cdc42, respectively (Heo andMeyer, 2003). Themechanism

of PI3K activation by these indirect regulators will be an inter-

esting topic for further investigation.

Conclusion
Our data present a comprehensive analysis of the interrelation-

ships between Ras superfamily small GTPases and PI3K

signaling. We determined that 21 out of 100 human small

GTPases examined activate PI3K. All of the PI3K-activating

small GTPases belong to the Ras and Rho families of small

GTPases and are classified as upstream or downstream activa-

tors. To initiate effective activation of PI3K by positive feedback,

multiple downstream activators must be simultaneously upregu-

lated and cooperate with each other in coupled positive feed-

back loops. We propose that the cooperative regulation of

PI3K by Ras and Rho family small GTPases is essential to

generate and maintain effective PI3K activation.

EXPERIMENTAL PROCEDURES

Mammalian DNA Constructs

The 100 human small GTPases analyzed (wild-type, constitutively active, and

dominant-negative forms) have been described previously (Heo et al., 2006;

Heo andMeyer, 2003). CFP- and YFP-PHAKT1 have been described previously

(Shin et al., 2011). FRB-mRFP-FT, FKBP-GFP-FT, LDR, and CF-iSH, which

contain the iSH domain (420–615) of p85b, have also been described previ-

ously (Inoue et al., 2005; Suh et al., 2006). Raichu-Cdc42 and Rac1 have

been described previously (Komatsu et al., 2011). Raichu-Rap1A and RalA

were kindly provided by Michiyuki Matsuda. Twenty-one small GTPases

were produced by cloning the CAAX- or poly basic-deleted small GTPase

ORFs into the FKBPx2-YFP backbone vector. RBDp110 from p110a (133–

332) was cloned into CFP-FT. All GEF constructs containing DH and PH

domains, CF-Fgd1 (346–720), CF-SGEF (413–811), Tiam1 (1012–1592), and

CF-Vav2 (164–536) were generated using RT-PCR cloning with gene-specific

primers containing attB sequences to create entry clones for the gateway

system (Invitrogen). The coding region of each entry clone was transferred

into YFP, mCherry, and CFP-FKBP expression vectors using LR Clonase

(Invitrogen). For TIRF imaging, CRIBPAK1 (69–108), RBDRAF1 (51–131), and

PHAKT1 (2–147) were cloned into the mCherry-C1 (Clontech) vector.

Cell Culture and Transfection

NIH 3T3 and HeLa cells were purchased from the American Type Culture

Collection (ATCC). Cells were cultured in Dulbecco’s Modified Eagle’s
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Medium (DMEM) supplemented with 10% FBS in 10% CO2 at 37�C and

were passaged every 3 days. Transfection was performed with a Neon

(Invitrogen) or Lipofectamine 2000 (Invitrogen) according to the manufac-

turer’s instructions.

InCell SMART-i Assay

For the screening of small GTPase-RBDp110 interactions, HeLa cells were incu-

bated at 24 hr after transfection with rapamycin (500 nM, Calbiochem) for 1 hr.

The cells were then fixed in 4% paraformaldehyde for 10 min. Images were

randomly captured with A1R confocal microscope.

Live-Cell Imaging and Data Acquisition

NIH 3T3 cells were incubated in serum-freemedium (DMEM) for 6 hr. Just prior

to imaging, the medium was replaced with DPBS that included glucose

(Invitrogen). For dual color measurements, CFP and YFP were used for

confocal microscopy, and CFP and mCherry were used for TIRF microscopy.

CFP, YFP, and mCherry were used for triple color measurements. All live

images were captured using A1R confocal (Nikon) and Ti TIRF (Nikon) micro-

scopes (603 magnification). The images were analyzed with Nikon imaging

software (NIS-element AR 64-bit version 3.00, Laboratory Imaging) and

MetaMorph software (version 7.6.0.0, MDS Analytical Technologies).

siRNA and Western Blotting

A universal negative control, Cdc42 (50-UUU GGG UCC CAA CAA GCA AGA

AAG G-30) and RhoG (50-AUG ACG AAG ACG UUG GUC UGA GGG U-30)
specific siRNAs were obtained from Invitrogen. At 48 hr after siRNA transfec-

tion (10 pM), whole-cell extracts were prepared and resolved by 4%–10%

gradient SDS-PAGE. The proteins were transferred to a PVDF membrane,

which was then incubated overnight at 4�C with anti-Cdc42 (Millipore) and

anti-RhoG (Millipore) antibodies. Bound antibodies were visualized with horse-

radish peroxidase-conjugated secondary antibodies (GE Healthcare) and the

ECL system (Millipore).

Mathematical Modeling

To investigate the cooperative regulatory mechanisms of three small GTPases

for PI3K, we developed a mathematical model using Hill-type functions (Kim

et al., 2007, 2008) as follows:

dPI3K

dt
=
k1ððCdc42+Rac1+RhoGÞ=k2ÞH$ðPI3Ktotal � PI3KÞ

1+ ððCdc42+Rac1+RhoGÞ=k2ÞH
� k3$PI3K;

dCdc42

dt
=
k4ðCdc42total � Cdc42Þ$S1

k5 + ðCdc42total � Cdc42Þ +
k6ðCdc42total � Cdc42Þ$PI3K
k7 + ðCdc42total � Cdc42Þ

� k8$Cdc42;

dRac1

dt
=
k9ðRac1total � Rac1Þ$S2

k10 + ðRac1total � Rac1Þ +
k11ðRac1total � Rac1Þ$PI3K
k12 + ðRac1total � Rac1Þ � k13$Rac1;

dRhoG

dt
=
k14ðRhoGtotal � RhoGÞ$S3

k15 + ðRhoGtotal � RhoGÞ +
k16ðRhoGtotal � RhoGÞ$PI3K
k17 + ðRhoGtotal � RhoGÞ

� k18$RhoG;

where the parameter values were H = 3, k1 = 1, k2 = 0.3, ki = 1 ð3%i%18Þ,
PI3Ktotal = 1, and Cdc42total = Ractotal = RhoGtotal = 0.5.

Statistical Methods

Statistical significance was evaluated by two-tailed unpaired Student’s t test

using SigmaPlot (version 9.0). Significance was established at p < 0.001.
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